
New (CH)12 Hydrocarbons. Synthesis and  Unusual 
Rearrangements 

Summary: A synthesis of pentacyclo[5.5.0.02J2.06~s.03~g]do- 
deca-4,lO-diene (4) is described, starting from bicyclo- 
[4.2.l]nona-2,4,7-trien-9-one. Thermolysis of 4 above 160 
"C gives benzene, but no products which might be derived 
from initial retro-Diels-Alder cleavage to tricyclo- 
[5.5.0.O2J2]dodeca-3,5,8,1O-tetraene (3). Formation of ben- 
zene is explained by equilibration of 4 with tetracyclo- 
[5.5.0.02~4.03J0]dodeca-5,8,11-triene (9) by an unusual 6-a 
electron reorganization. Retro-Diels-Alder cleavage of 9 
would give bicyclo[6.4.0]dodeca-2,4,6,9,ll-pentaene (lo), 
which is known to fragment to benzene. Synthesis of 9 con- 
firms this proposal because 9 rearranges to 4 above 120 OC, 
thereby demonstrating a low-energy pathway between the 
two isomers. Novel synthetic steps include (1) a procedure 
for conversion of a$-unsaturated esters into a,@-saturated 
acids in the presence of other olefins via 1-pyrrazolin-3-one 
intermediates; and (2) conversion of tosylhydrazones into 
alkenes using lithium diisopropylamide at  0-25 OC. 

The (CHI12 isomer 1 is of interest as a potential photo- 
chemical precursor of the truncated tetrahedron 2.l A pos- 
sible approach to 1 involves the Cope rearrangement of a 
divinylcyclopropane 3 which in turn might be available by 
retro-Diels-Alder cleavage of 4. In this paper we shall de- 
scribe the synthesis of 4 and its thermal behavior. 
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Structure 4 can be recognized as a derivative of the bar- 
baralane skeleton, accessible by internal ketocarbenoid ad- 
dition to a double bond in the precursor 5. A convenient sy- 
thesis of 4 and 5 is outlined in Scheme I starting from bicy- 
cl0[4.2.l]nona-2,4,7-trien-9-one.~ The key steps in the 
scheme are the well-precedented di-n-methane rearrange- 
ment of 6,2,3 and conversion of 8 into 6. The latter step is 
accomplished in 82% yield from 7 (57% overall from start- 
ing ketone) by oxidative fragmentation via a l-pyrrazolin- 
%one intermediate* (slow addition of N-chlorosuccinimide 
to 7 dissolved in H20-THF-KOH a t  -20 OC). Under care- 
fully controlled conditions,6 this reaction is an efficient 
general method for reduction of a,&unsaturated esters. 

Vapor phase pyrolysis of 46 in a quartz reactor (stirred 
flow ~ y s t e m ) ~  does not give detectable amounts of any 
other (CH)12 isomer. Instead, the starting material frag- 
ments to benzene at temperatures above 160 OC! This high- 
ly unusual (although perhaps not unexpected) rearrange- 
ment can be explained according to two categories of ratio- 
nale. In the first category are numerous variations on the 
theme that some combination of electrocyclic steps will re- 

Scheme Ia 
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a a, (C,H,O),POCH,CO,C,H,, NaH; b, H,NNH,.H,O, 

C,H,OH, A ;  C, NCS, KOH, THF-H,O, -20°C; d, Ph,CO, 
hv, C,H,; e, dicyclohexylamine, (COCI,), CH,N,; f ,  CuSO,, 
8OoC, C,H,; g, TsNHNH,, LiN(i-Pr),, 25°C. 

late any (CH)12 isomer having a continuous chain of all 12 
carbons to 12-annulene. As demonstrated by Schroder et  
al., 12-annulene affords benzene via the valence bond tau- 
tomer 10 a t  40 oC.8 In a second category, we shall consider 
alternatives which do not require formation of a 12-annu- 
lene. The most reasonable of these mechanisms involves 
the novel 6-71- electron transformation of 4 into 9.9 Retro- 
Diels-Alder cleavage of 9 to 10 would then be feasible,1° 
and fragmentation to benzene would be the result. 

To  test the above proposition, we have prepared 9 by the 
route described in Scheme 111. The nontrivial steps in this 

Scheme I1 

4 

9 0x3-0 
sequence are the carboxylation of bicyclo[3.2.2]nonatrienyl 
anionll and ring expansion of a cyclopropyl ketone 1212 by 
the excellent method of Taguchi, Yamamoto, and Nozaki.13 
The last step employs a variation of the tosylhydrazone 
olefin synthesis using lithium diisopropylamide (25 OC, 1-2 
h) instead of the usual alkyllithium reagent.14J5 

Thermolysis of 91s above 160 OC does indeed give ben- 
zene, but more significantly, reaction a t  temperatures be- 
tween 120 and 150 OC results in complete rearrangement of 
9 to 4! Thus, a low-energy thermal pathway connects 4 and 
9 and it is reasonable to invoke interconversion of the more 
stable isomer 4 with 9 at higher temperatures. This experi- 
ment provides strong support for the rationale given in 
Scheme 11, and argues against mechanisms involving 12- 
annulenes. The experiment does not totally rule out the 
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H,dd ,J=9 .0 ,6 .8Hz) ,5 .42 (1H,dd ,J=9 .9 ,8 .1Hz) ,5 .30 (1H,ddt ,J  
= 9.9, 4.9, ca. 0.6 Hz), 3.15 (1 H, m), 2.71 (2 H, m). 1.4-1.8 (3 H, m); 
exact mass 156,09366 (calcd 156,09390). 

E. Vedejs, * R. A. Shepherd 
Department of Chemistry, University of Wisconsin 

Madison, Wisconsin 53706 

Received October 27, 1975 

11 
., 

12 

0 
aa,  Na/K, THF, CO, (58%); b, (COCI),, CH,N,, copper 

bronze, benzene, 80 “ C  (43% overall); c, LiCHBr,, BuLi13 
(53% overall); d, TsNHNH,, CH,OH (62%); e, LiN(i-Pr)2, 
THF, room temperature (60%). 

possibility that  4 might also equilibrate with 3, but this 
now appears to be a remote prospect. 

Supplementary Material Available. Characterization of com- 
pounds 6 and 11, together with the experimental details for prepa- 
ration of these intermediates (4 pages). Ordering information is 
given on any current masthead page. 
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Reaction of 1,2- and 1,3-Dicarbonyl Compounds 
with Dimethyl @-Ketoglutarate. I. Synthesis of Methyl 
5,6,7,8-Tetrahydro-5-oxocoumarin-A4(3~~a-acetate 
Summary: Reaction of dimethyl &ketoglutarate (excess) 
and 1,3-~yclohexanedione in aqueous buffer (pH 6.8) yield- 
ed the product of 1:l stoichiometry, methyl 5,6,7,8-tetrahy- 
dro-5-oxocoumarin-A4(3H)@-acetate. 

Sir: Reaction of dimethyl &ketoglutarate 1 with 1,2-dicar- 
bony1 compounds usually proceeds smoothly in aqueous so- 
lution (pH 6.8) at room temperature to furnish adducts 
formed from two molecules of 1 and one molecule of the 
carbonyl compound. Use of glyoxal (e.g.) yields tetramethyl 
bicyclo[ 3.3.0]octane-3,7-dione-2,4,6,8-tetracarbo~ylate.~ 
Other 1,2-dicarbonyl compounds in general give analogous 
adducts,l while in a few cases more complex reaction prod- 
ucts have been observed.2 Cyclic 1,2 diketones yield tetra- 
methyl propellanedione t e t r aca rbo~y la t e s .~~~  The tendency 
toward 2:l stoichiometry in this reaction is marked;lv3 in a 
few cases, however, 1:l adducts have been i ~ o l a t e d . ~  

It  seemed of interest to examine the analogous reaction 
between 1 and cyclic 1,3 diketones. We now wish to report 
on a compound obtained from 1 and 1,3-~yclohexanedione 
2. 

When an aqueous solution of 1 (104.4 g, 0.60 mol) and 2 
(22.4 g, 0.20 mol) in citrate/phosphate buffer (pH 6.8) was 
stirred for several days at  room temperature, TLC indicat- 
ed the presence of a single reaction product in addition to 
starting materials. Extraction with chloroform and concen- 
tration to small volume provided a 45% yield of a pure crys- 
talline compound, mp 123-125O, not changed on recrystal- 
lization from chlorofopm. Elemental analysis and high-res- 
olution mass spectrometry indicated that the new com- 
pound had the empirical formula C12H1205. In contrast to 
the results with 1,2 diketones, it is evidently produced by 
reaction of 1 and 2 in a 1:1 ratio with loss of one molecule 
each of water and methanol. 

A plausible scheme leading to two alternative structures 
for C12H1205 can be easily written (Scheme I). Spectro- 
scopic evidence is compatible with methyl 5,6,7,8-tetrahy- 
dro-5-oxocoumarin-A4(3H)~a-acetate 3 and not the a-pyrone 
4. The ultraviolet spectrum of 3 [A,,, 261 nm (log 6 4.06)] is 
different from those of the authentic a-pyrones 5 and 6 
(A,,, 3005 and 3026 nm, respectively) but is similar to that 
of the ketolactone 7 (A,,, 271 nm).5 In the NMR spectrum 
of 3, two triplets representing the protons of C-6 (2 H) and 
C-8 (2 H) were observed a t  6 2.60 and 2.90, respectively. 
The multiplet a t  6 2.15 was assigned to the two protons of 
C-7. In addition three singlets were observed which were 
ascribed to the ester function (6 3.71), the methylene pro- 
tons of C-3 (3.81), and the vinyl proton (6.03). 

Support for the stereochemical assignment of the exocy- 
clic double bond as that depicted in 3 is obtained by close 


